

چربی ها و اسیدهای چرب

ابراهيم قاسمي

- The common and defining feature of which is their insolubility in water.
- Hydrophobic or amphiphilic

Importance

- stored forms of energy
- Structural elements of biological membranes
- electrical insulators
- hormones, and intracellular messengers
- enzyme cofactors, electron carriers, light absorbing pigments

Classification

• Simple lipids

- Fats and Oils (triacylglycerols)
- Waxes

Complex lipids

- Phospholipids
- Glycolipids
- Sphingolipids

• Sterols

Condensation reaction

Glycerol

Fatty acids

- hydrocarbon derivatives (carboxylic acids)
- carbons length (C4 to C36).
- even numbers
- Saturated
- One or more double bonds (unsaturated)
- Unconjugated (double bonds, are separated by a methylene group)
- cis configuration

Table 14–1.Saturated fatty acids.

Common Name	Number of C Atoms	
Acetic	2	Major end product of carbohy- drate fermentation by rumen organisms ¹
Propionic	3	An end product of carbohydrate fermentation by rumen organisms ¹
Butyric	4	In certain fats in small amounts
Valeric	5	(especially butter). An end product of carbohydrate fermentation by
Caproic	6	rumen organisms ¹
Lauric	12	Spermaceti, cinnamon, palm ker- nel, coconut oils, laurels, butter
Myristic	14	Nutmeg, palm kernel, coconut oils, myrtles, butter
Palmitic	16	Common in all animal and plant
Stearic	18	fats

Table 14-2. Unsaturated fatty acids of physiologic and	nutritional significance.
--	---------------------------

Number of C Atoms and Number		Common		
Double Bonds	Family	Name	Systematic Name	Occurrence
		N	Aonoenoic acids (one double bond)	
16:1;9	ω7	Palmitoleic	<i>cis</i> -9-Hexadecenoic	In nearly all fats.
18:1;9	ω9	Oleic	<i>cis</i> -9-Octadecenoic	Possibly the most common fatty acid in natural fats.
18:1;9	ω9	Elaidic	trans-9-Octadecenoic	Hydrogenated and ruminant fats.
			Dienoic acids (two double bonds)	
18:2;9,12	ωб	Linoleic	all- <i>cis</i> -9,12-Octadecadienoic	Corn, peanut, cottonseed, soybean, and many plant oils.
		٦	Frienoic acids (three double bonds)	
18:3;6,9,12	ωб	γ-Linolenic	all- <i>cis</i> -6,9,12-Octadecatrienoic	Some plants, eg, oil of evening prim- rose, borage oil; minor fatty acid in animals.
18:3;9,12,15	ω3	α-Linolenic	all- <i>cis</i> -9,12,15-Octadecatrienoic	Frequently found with linoleic acid but particularly in linseed oil.
		Т	etraenoic acids (four double bonds)	
20:4;5,8,11,14	ωб	Arachidonic	all- <i>cis</i> -5,8,11,14-Eicosatetraenoic	Found in animal fats and in peanut oil; important component of phospho- lipids in animals.
		Р	entaenoic acids (five double bonds)	
20:5;5,8,11,14,17	ω3	Timnodonic	all- <i>cis</i> -5,8,11,14,17-Eicosapentaenoic	Important component of fish oils, eg, cod liver, mackerel, menhaden, salmon oils.
		l	Hexaenoic acids (six double bonds)	
22:6;4,7,10,13,16,19	ω3	Cervonic	all- <i>cis</i> -4,7,10,13,16,19-Docosahexaenoic	Fish oils, phospholipids in brain.

Nomenclature

Carbon

- The carbon atoms adjacent to the carboxyl carbon (No. 2, 3, and 4) are also known as the α , β , and γ carbons, the terminal methyl carbon is known as the ω or n-carbon.
- names of hydrocarbon (saturated acids end in -anoic, and unsaturated acids with double bonds end in enoic)
 - octadecenoic acid (oleic acid)
- the chain length, number of double bonds, positions of any double bonds
 - 18:2(Δ^{9,12})

Oleic acid

Trans fatty acids

- increased blood levels of LDL (bad cholesterol) and decreased HDL (good cholesterol)
 - French fries, doughnuts, and cookies
 - during hydrogenation, or "hardening," of natural oils
- Improved health
 - Dairy products and meat

Physical properties of the fatty acids

the length and degree of unsaturation

- solubility of fatty acids in water (a) Carboxyl ⁻O, group
- Melting points

Carbon			Common name	Melting	(mg/g solvent)	
skeleton	Structure*	Systematic name [†]	(derivation)	point (°C)	Water	Benzene
12:0	CH ₃ (CH ₂) ₁₀ COOH	n-Dodecanoic acid	Lauric acid (Latin <i>laurus,</i> "laurel plant")	44.2	0.063	2,600
14:0	CH ₃ (CH ₂) ₁₂ COOH	n-Tetradecanoic acid	Myristic acid (Latin <i>Myristica,</i> nutmeg genus)	53.9	0.024	874
16:0	CH ₃ (CH ₂) ₁₄ COOH	n-Hexadecanoic acid	Palmitic acid (Latin <i>palma,</i> "palm tree")	63.1	0.0083	348
18:0	CH ₃ (CH ₂) ₁₆ COOH	n-Octadecanoic acid	Stearic acid (Greek s <i>tear,</i> "hard fat")	69.6	0.0034	124
20:0	CH ₃ (CH ₂) ₁₈ COOH	n-Eicosanoic acid	Arachidic acid (Latin <i>Arachis,</i> legume genus)	76.5		
24:0	CH ₃ (CH ₂) ₂₂ COOH	n-Tetracosanoic acid	Lignoceric acid (Latin <i>lignum,</i> "wood" + <i>cera,</i> "wax")	86.0		
$16:1(\Delta^9)$	$CH_3(CH_2)_5CH = CH(CH_2)_7COOH$	cis-9-Hexadecenoic acid	Palmitoleic acid	1-0.5		
18:1(Δ ⁹)	$CH_3(CH_2)_7CH = CH(CH_2)_7COOH$	cis-9-Octadecenoic acid	Oleic acid (Latin <i>oleum,</i> "oil")	13.4		
18:2(Δ ^{9,12})	CH ₃ (CH ₂) ₄ CH=CHCH ₂ CH= CH(CH ₂) ₇ COOH	cis-,cis-9,12-Octadecadienoic acid	Linoleic acid (Greek <i>linon,</i> "flax")	1-5		
18:3(Δ ^{9,12,15})	CH ₃ CH ₂ CH=CHCH ₂ CH= CHCH ₂ CH=CH(CH ₂) ₇ COOH	cis-,cis-,cis-9,12,15- Octadecatrienoic acid	lpha-Linolenic acid	-11		
20:4(Δ ^{5,8,11,14})	$\begin{array}{c} CH_3(CH_2)_4CH = CHCH_2CH = \\ CHCH_2CH = CHCH_2CH = \\ CH(CH_2)_3COOH \end{array}$	cis-,cis-,cis-,cis-5,8,11,14- Icosatetraenoic acid	Arachidonic acid	-49.5		

TRIACYLGLYCEROLS (TRIGLYCERIDES)

Esters of fatty acids with glycerol

- mixed triacylglycerols
 - Triacylglycerols that are composed largely of unsaturated fatty acids are called oil and those from saturated FA are called Fat.

• Stored forms of energy: are highly exergonic

- In vertebrates (adipocytes)
- Germinating seeds
- Insulation

$$\begin{array}{c} O & {}^{1}CH_{2} - O - \overset{O}{C} - R_{1} \\ \\ H_{2} - \overset{\parallel}{C} - O - \overset{2}{C} H & O \\ & {}^{1}_{3}CH_{2} - O - \overset{\parallel}{C} - R_{2} \end{array}$$

Triacylglycerol.

between all carbon pairs

that contain double bonds between one or more pairs of carbon atoms

- long-chain (C14 to C36) saturated and unsaturated fatty acids with long-chain (C16 to C30) alcohols
- Energy Stores
 - Plankton
- Water Repellents
 - Birds
 - tropical plants
 - Lanolin
 - beeswax

Phospholipids

... Phospholipids

- Derivatives of phosphatidic acid
- Phosphatidic acid as an intermediate in the synthesis of phosphoglycerols

Name of glycerophospholipid	Name of X	Formula of X	Net charge (at pH 7)
Phosphatidic acid	_	-H	-1
Phosphatidylethanolamine	Ethanolamine	- CH_2 - CH_2 - NH_3	0
Phosphatidylcholine	Choline	- CH_2 - CH_2 - $N(CH_3)_3$	0
Phosphatidylserine	Serine	$- \operatorname{CH}_2 - \operatorname{CH}_{\operatorname{COO}^-}^+ \operatorname{NH}_3$	-1
Phosphatidylglycerol	Glycerol	- CH ₂ -CH-CH ₂ -OH OH	-1
Phosphatidylinositol 4,5-bisphosphate	<i>myo-</i> Inositol 4,5- bisphosphate	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-4
Cardiolipin	Phosphatidyl- glycerol	$- \begin{array}{c} CH_{2} \\ CHOH & O \\ CH_{2}-O-P-O-CH_{2} \\ O^{-} & O \\ CH-O-C-R^{1} \\ O \\ CH_{2}-O-C-R^{2} \end{array}$	-2

• Lysophospholipids as Intermediates in the Metabolism of Phosphoglycerols

Phosphatidylcholines (Lecithins)

- Membrane bilayers
- Surfactant

Phosphatidylinositol

reservoir of messenger molecules

Some Phospholipids Have Ether-Linked Fatty Acids

 Heart tissue, membranes of halophilic bacteria, ciliated protists, and certain invertebrates

• Membrane lipids in plant cells

Chloroplasts Contain Galactolipids and Sulfolipids

Sphingolipids

Derivatives of Sphingosine

long-chain amino alcohol sphingosine

- Ceramide: The combination of sphingosine plus fatty acid
- Ceramide is the structural parent of sphingolipids

....Sphingolipids

Phosphosphingolipids

- Sphingomyelins
 - Found in the Nervous System

Glycosphingolipids

- Neutral (uncharged) glycolipids
 - They have no charge at pH 7.
 - Cerebrosides have a single sugar
 - Globosides have two or more sugars
- Gangliosides
 - have oligosaccharides as their polar head groups and one or more residues of N-acetylneuraminic acid (Neu5Ac), a sialic acid

....Sphingolipids

Name of sphingolipid	Name of X	Formula of X
Ceramide	_	— H
Sphingomyelin	Phosphocholine	$- \overset{O}{\underset{O}{\overset{\parallel}{}{}{}{}{}{}{\overset$
Neutral glycolipids Glucosylcerebroside	Glucose	$\begin{array}{c} CH_{2}OH \\ H \\ OH \\ H \\ OH \\ H \\ OH \end{array}$
Lactosylceramide (a globoside)	Di-, tri-, or tetrasaccharide	Glc
Ganglioside GM2	Complex oligosaccharide	Glc Gal GalNAc

....Sphingolipids

Glycosphingolipids

Archaebacteria

- Extreme conditions (high temperatures, low pH, high ionic strength)
- Contain Unique Membrane Lipids
 - long-chain (32 carbons)
 - branched hydrocarbons
 - ether bonds

Isoprene derivatives

- Sterol
 - Cholesterol
 - isoprene subunits

Isoprene unit.

- Structural lipids
 - Plasma membrane
- precursors for a variety of products with specific biological activities
 - Steroid hormones
 - Bile acids
 - as a precursor of vitamin D

Other isoprene derivatives

- •rubber,
- camphor,
- the fat-soluble vitamins A, E, and K,
- β-carotene (provitamin A).
- Ubiquinone

Essential fatty acids (EFA)

- Alpha-linolenic acid (ALA), an omega-3 fatty acid
- linoleic acid (LA), an omega-6 fatty acid

α-Linolenic acid

Essential fatty acids (EFA)

• Structure of cell membranes

biological processes

gene expression

Eicosanoids Carry Messages to Nearb

- Signaling molecules made of polyunsaturated fatty acids with 20 carbon units in length
- Paracrine hormones
- in a variety of processes important in human health or disease
 - Reproductive function
 - inflammation
 - fever and pain
 - the formation of blood clots
 - the regulation of blood pressure
 - Gastric acid secretion

Peroxisome

(DHA) 22:6n-3 (DPA)

22:5n-6

Omega-3 fatty acids

- Maintaining the nervous system
- ALA is a precursor of EPA, which is tend not to promote inflammation.
- interferes with the conversion of LA to AA and blocks the formation of cytokines and blood levels of Creactive protein (CRP)
 - have biologic effects that make them useful in preventing and managing chronic conditions such as type 2 diabetes, kidney disease, rheumatoid arthritis, high blood pressure, coronary heart disease, stroke, Alzheimer disease, alcoholism and certain types of cancer.

Oil	Omega-6 Content	Omega-3 Content
Safflower	75%	0%
Sunflower	65%	0%
Corn	54%	0%
Cottonseed	50%	0%
Sesame	42%	0%
Peanut	32%	0%
Soybean	51%	7%
Canola	20%	9%
Walnut	52%	10%
Flaxseed	14%	57%
Fish*	0%	100%

Table 4. Omega-6/Omega-3 Ratios in Different Populations.

Population	w-6/w-3
Paleolithic	0.79
Greece prior to 1960	1.00-2.00
Current Japan	4.00
Current India, rural	5-6.1
Current UK and northern Europe	15.00
Current US	16.74
Current India, urban	38–50

... Eicosanoids

• Prostaglandins (PG)

- Five-carbon ring
- PGE: ether-soluble, and PGF, for: phosphate buffer—soluble
- Each group contains numerous subtypes

Thromboxanes

- six-membered ring
- Blood clots and the reduction of blood flow

Leukotrienes

- Contain three conjugated double bonds
- anaphylactic shock (Overproduction of leukotrienes causes asthmatic attacks, hypersensitive to bee stings, penicillin)

Туре	<u>Receptor</u>	Receptor type	Function
<u>PGI₂</u>	<u>IP</u>	<u>G</u> _s	• <u>vasodilation</u> •inhibit <u>platelet aggregation</u> • <u>bronchodilation</u>
PGE ₂	<u>EP₁</u>	<u>G</u> _{<u>q</u>}	• <u>bronchoconstriction</u> • <u>GI tract smooth muscle</u> contraction
	<u>EP₂</u>	<u>G</u> _s	• <u>bronchodilation</u> • <u>GI tract smooth muscle</u> relaxation • <u>vasodilation</u>
	<u>ЕР</u> <u>з</u>	<u>G</u> i	 ↓ gastric acid secretion ↑ gastric mucus secretion uterus contraction (when pregnant) GI tract smooth muscle contraction lipolysis inhibition ↑ autonomic neurotransmitters ^[12] ↑ platelet response to their agonists ^[13] and ↑ atherothrombosis in vivo ^[14]
	Unspecified		• <u>hyperalgesia^[12]</u> • <u>pyrogenic</u>
<u>PGF_{2α}</u>	<u>FP</u>	<u>G</u> _q	• <u>uterus</u> contraction • <u>bronchoconstriction</u>

LIPID PEROXIDATION

• Oxidative degradation of lipids

Working with Lipids

- Lipid Extraction Requires Organic Solvents
 - Neutral lipids are extracted with ethyl ether, chloroform, or benzene
 - Membrane lipids are extracted by more polar organic solvents, such as ethanol or methanol.
 - A commonly extractant is a mixture of chloroform, methanol, and water (1:2:0.8)

least polar increasing eluting power

cyclohexane petroleum ether hexane toluene dichloromethane ethyl acetate ethanol acetone methanol

Lipid extraction

Separation of Lipids

- Stationary phase: polar material such as silica gel
- Mobile phase: washing the column with solvents of progressively higher polarity (chloroform, acetone, Methanol.)

Separation of Fatty Acids

- Gas-liquid chromatography separates volatile components of a mixture
- heated in a methanol/HCl or methanol/NaOH mixture, which converts fatty acids esterified to glycerol into their methyl esters
- Stationary phase:
- Mobile phase: an inert gas such as helium.
- column is heated

